If reharmonizing a tune is like painting a car, then simple substitution is like choosing a different shade of the same color—going from blue to indigo, or rose to pink. Simple substitution involves replacing a chord with another that has similar harmonic function. It allows you to change the sound of a tune while still retaining much of its original color.

In order to use simple substitution as a reharmonization technique, you must understand the division of the seven diatonic chords into three groups or families. Each of these chord families has a function. A chord’s function is its tendency to move or remain stable within a musical phrase. Let’s use the key of C as an example.

<table>
<thead>
<tr>
<th>CMaj7</th>
<th>D–7</th>
<th>E–7</th>
<th>FMaj7</th>
<th>G7</th>
<th>A–7</th>
<th>B–7(b5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMaj7</td>
<td>II–7</td>
<td>III–7</td>
<td>IVMaj7</td>
<td>V7</td>
<td>VI–7</td>
<td>VII–7(b5)</td>
</tr>
</tbody>
</table>

Fig. 1.1. Diatonic seventh chords in the key of C

Tonic Family

Analysis Symbol: (T)

The tonic family of chords has a resting function. Chords in this group tend to sound stable. They have little sense of forward motion and are almost always found at the phrase endings of popular and standard tunes. Diatonic chords built on the first, third, and sixth degrees of a scale are the members of this group.

<table>
<thead>
<tr>
<th>CMaj7</th>
<th>E–7</th>
<th>A–7</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMaj7</td>
<td>III–7</td>
<td>VI–7</td>
</tr>
</tbody>
</table>

Fig. 1.2. Tonic family (T) chords in the key of C

Tonic chords share several common tones. The chords are considered restful because they do not contain the fourth degree of the scale, which is F in the key of C. The fourth degree of any major scale is known as a **tendency tone**—it tends to lead to the third degree of the scale when played over IMaj7.
Subdominant Family Analysis Symbol: (SD)

Chords in the *subdominant* family have a moderate tendency to move ahead within the musical phrase. All chords in this family contain the restless fourth degree of the scale. Chords built on the second and fourth scale degrees make up this group. The V7sus4 is also included in this family, because it contains the fourth scale degree instead of the third. (Using a suspended fourth instead of a third eliminates the tritone that gives a dominant family chord its characteristic sound. The tritone function is described below.)

\[D-7 \quad F\text{Maj7} \quad G7\text{sus4} \]

\[\text{II}-7 \quad I\text{V\text{Maj7}} \quad V7\text{sus4} \]

Fig. 1.3. Subdominant family (SD) chords in the key of C

Dominant Family Analysis Symbol: (D)

Chords in the *dominant* family sound unresolved and have a strong tendency toward resolution. They are said to have a “moving” function. Dominant chords almost always precede phrase endings in popular and standard tunes. The chords V7, VII–7(b5), and V7sus4 are in this family. (The V7sus4 chord has a dominant function when it resolves directly to I\text{Maj7}, even though it lacks the tritone interval.)

\[G7 \quad B-7(b5) \quad G7\text{sus4} \]

\[V7 \quad \text{VII–7(b5)} \quad V7\text{sus4} \]

Fig. 1.4. Dominant family (D) chords in the key of C

V7 and VII–7(b5) share many common tones. They also contain both the fourth and seventh scale degrees. The intervallic distance between these two notes is called a **tritone**, also known as an **augmented** fourth. The tritone’s highly restless sound produces a strong sense of forward motion. The tritone formed by the third and seventh of a dominant chord creates the chord’s strong forward motion. Dominant family chords often resolve to a chord in the tonic family.

\[\text{C7} \]

Fig. 1.5. C7 chord with its tritone interval
How Simple Substitution Works

The following examples explore how simple substitution works.

![F6 D7 Bb F6](image1)

Fig. 1.6. A basic model

Below, simple substitution modifies the model. Note that the chord function is kept the same in each measure. Look closely at the musical example to:

1. Verify the functional analysis of each chord in the original phrase.

2. Observe the substitution of other chords that have a similar function in the key.

![F6 A7 G F6](image2)

Fig. 1.7. Simple substitution modifies the basic model

![F6 D7 C7sus4 D7](image3)

Fig. 1.8. Simple substitution, another variation
The following examples apply simple substitution to a phrase from the jazz standard, “Here’s That Rainy Day.” Notice the functional analysis of each chord in the original phrase.

![Fig. 1.9. “Here’s That Rainy Day” (J. Van Heusen/J. Burke), original form](image)

![Fig. 1.10. “Here’s That Rainy Day,” dominant chord replaced by another chord in its family](image)

![Fig. 1.11. “Here’s That Rainy Day,” tonic chord replaced by another chord in its family](image)
Melody/Harmony Relationships

When using these substitutions, pay close attention to the melody/harmony relationship—the intervals created between the notes in the melody and the notes in the supporting chord. Sometimes, the notes in the new substitute chord can clash with the melody.

Unwanted b9 Intervals

Avoid unwanted b9 (or b2) melody/harmony intervals when using simple substitution. The b2 interval is a half step. It is also known as a b9, which is an octave plus a minor second. This melody/harmony interval creates a dissonance strong enough to destroy the basic function of the chord. In general, avoid choosing a substitute chord that creates a b9 interval with any one of the melody notes.

The V7(b9) is the only common exception to this rule. The V7(b9) has become an acceptable sound in many pop and jazz songs. For example, a C7(b9) moving to FMaj7 in the key of F major works because the b9 is combined with a tritone interval. Both the b9 and tritone intervals follow established melodic tendencies when they resolve to the Fmaj7. Many listeners perceive b9 combinations that do not follow such well-established paths of resolution as errors or wrong notes.

In the following example, the III–7 creates an unwanted b9 interval in the melody, also referred to as “in the lead.” The last melody note, F, forms a b9 with E, which is the fifth of the A–7 chord. The chord has a minor quality and as such cannot be clearly understood if used with a b9 melody/harmony combination.

Fig. 1.12. Unwanted b9 melody/harmony relationship
Unwanted Tritone Intervals

Avoid unwanted tritone (♯4/♭11) melody/harmony intervals on minor seventh chords.

![Fig. 1.13. Original form](image)

Below, in measure 2, the B in the lead of D–7 creates an unwanted tritone interval with F, the third of the chord. This tritone melody/harmony combination destroys the chord's original function, transforming D–7 from a subdominant chord into an odd-sounding dominant structure. The resulting sound is dissonant and awkward in a simple diatonic context; the interval combination doesn't blend or resolve smoothly within the phrase.

![Fig. 1.14. Unwanted tritone melody/harmony relationship](image)

It is interesting that the IVMaj7 chord (FMaj7) can be used with ♯4 in the melody, while its simple substitution, II–7(D–7), does not work as effectively with the same melody/harmony combination—even though both chords share subdominant function.

Most pop writers adhere to the unspoken rule of not using ♯4 intervals on minor seventh chords because it can create too great a change in the sound and character of the original chord. To the listener—even to the nonmusician—the FMaj7 with B in the lead sounds subtly less awkward than D–7 with B in the lead.

The use of 13 in the lead of minor seventh chords, which produces a tritone with the third, is even more awkward when the minor seventh is a II–7 followed by V7. The musical flow of the cadence seems more satisfying when the tritone interval and its greater sense of motion are reserved for the G7. Avoid using a 13 or ♭13 in the lead of II–7 chords.
Another general rule to follow when reharmonizing popular tunes: keep it simple.

Once you have chosen your primary chord substitutions, you can add additional chords to help smooth out the progression. Adding chords increases the number of chords used in each bar. This is referred to as increasing the harmonic rhythm.

In general, more active harmonic rhythms produce a more energetic musical phrase, while slower harmonic rhythms are more languid. Evaluate the effect of different harmonic rhythms with every musical example you encounter.

The example below reharmonizes the melody of fig. 1.6 using simple substitution and doubling the number of chords per measure. This gives the progression a “busier” feel. The chord inversion (A–7/E) smoothes the transition between the two tonic chords.

Jazz standards and bebop tunes, which commonly use two or more chords per measure, have fast harmonic rhythm. In contrast, in contemporary pop styles, a single chord may last for many measures.
Exercises

Reharmonize the examples using simple substitution. Use both slow and fast harmonic rhythm in developing your reharmonizations. Label each chord with a Roman numeral (IMaj7, II–7, etc.), and label each chord with its functional family name: tonic (T), subdominant (SD), or dominant (D). The first example is done for you. After trying some chord substitutions of your own, check out the reference examples at the end of the book.

Note: It is not necessary to change all of the original chords to get an interesting reharmonization.

EXERCISE 1.1

Original form with Roman numeral analysis:

![Original form with Roman numeral analysis](image)

Your reharmonization 1:

![Your reharmonization 1](image)

Your reharmonization 2:

![Your reharmonization 2](image)
EXERCISE 1.2

Original form with Roman numeral analysis:

```
| F   | G7sus4 | G   | F   | C   | G
|-----|--------|-----|-----|-----|-----
| IVMaj7 | V7sus4 | V   | IV  | I   | V
| (SD)  | (SD)   | (D) | (SD) | (T) | (D)
```

Your reharmonization 1:

```
| F   | G7sus4 | G   | F   | C   | G
|-----|--------|-----|-----|-----|-----
| IV  | V7sus4 | V   | IV  | I   | V
| (SD) | (SD)   | (D) | (SD) | (T) | (D)
```

Your reharmonization 2:

```
| F   | G7sus4 | G   | F   | C   | G
|-----|--------|-----|-----|-----|-----
| IV  | V7sus4 | V   | IV  | I   | V
| (SD) | (SD)   | (D) | (SD) | (T) | (D)
```

Continue reharmonizing these examples using simple substitution. Use the same analysis procedures as on the previous page.

EXERCISE 1.3

Original form with Roman numeral analysis:

```
| F   | G7sus4 | G   | F   | C   | G   | C
|-----|--------|-----|-----|-----|-----|-----
| IV  | V7sus4 | V   | IV  | I   | V   | I
| (SD) | (SD)   | (D) | (SD) | (T) | (D) | (T)
```

Your reharmonization 1:

```
| F   | G7sus4 | G   | F   | C   | G   | C
|-----|--------|-----|-----|-----|-----|-----
| IV  | V7sus4 | V   | IV  | I   | V   | I
| (SD) | (SD)   | (D) | (SD) | (T) | (D) | (T)
```

Your reharmonization 2:

```
| F   | G7sus4 | G   | F   | C   | G   | C
|-----|--------|-----|-----|-----|-----|-----
| IV  | V7sus4 | V   | IV  | I   | V   | I
| (SD) | (SD)   | (D) | (SD) | (T) | (D) | (T)
```
EXERCISE 1.4

Original form with Roman numeral analysis:

A–VI

E–7 III–7

FMaj7 IVMaj7

D–7 II–7 V7

G7

Your reharmonization 1:

Your reharmonization 2: